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Abstract.
We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular

dynamics calculations of shock Hugoniot temperatures. Using a Grüneisen equation of state and a quasi-
harmonic approximation to the vibrational energies, we derive a simple, post-processing method for cal-
culation of the quantum corrected Hugoniot temperatures. We have used our novel technique onab initio
simulations of shock compressed water. Our results indicate significantly closer agreement with all available
experimental temperature data. Our formalism and technique can be easily applied to a number of different
shock compressed molecular liquids or solids.
Keywords: Hugoniot temperature, molecular dynamics, quantum effects

INTRODUCTION

Measurement of shock Hugoniot temperatures of
many systems remains an unresolved issue[1]. Ac-
curate temperatures remain difficult to determine due
to large uncertainties in the calibration of pyrometric
measurements[1, 2]. As a result, experiments tend
to rely on equation of state models for temperature
data, which have been shown to be inaccurate for
some systems[2]. Molecular Dynamics (MD) simu-
lations provide an independent route to temperature
determination, where material properties such as the
shock Hugoniot states are readily computed[3, 4].

Accurate modeling of the breaking and forming of
chemical bonds in MD simulations usually requires
the use of quantum theories such as Density Func-
tional Theory (DFT)[5, 4]. However, DFT-MD sim-
ulations have been shown to under-predict experi-
mental Hugoniot temperatures for covalently bonded
materials by up to 20 – 30%[6, 4]. Molecular Dy-
namics simulations in general propagate classical nu-
clear equations of motion, neglecting quantum zero-
point and vibrational energy effects. As a result, the
erroneous classical heat capacities inherent in MD
simulations of these materials could produce Hugo-
niot temperatures that are too low. Determination of

material equations of state could be greatly facili-
tated by a more accurate MD temperature calcula-
tion methodology that includes these quantum ef-
fects. In this work, we report a novel theoretical post-
processing methodology for the inclusion of quan-
tum nuclear vibrational effects in the equation of
state from MD simulations of shock compression.

METHODS

We first approximate the equation of state of the true
(quantum) system by using a Grüneisen equation of
state[7]:

E(V,T ) = Ec(V )+ET (V,T ) (1)

P(V,T ) = Pc(V )+PT (V,T ) (2)

.
Here, the quantitiesEc and Pc correspond to the

cold components of the internal energy and pressure,
respectively, which are independent of temperature.
ET (V,T ) corresponds to the thermal component of
the internal energy. The thermal component of the
pressure is defined asPT ≡ Γ(V )ET (V,T )/V , where
Γ(V ) is the dimensionless Grüneisen coefficient. The



Grüneisen parameterΓ(V ) is assumed to be indepen-
dent of temperature in the equation of state. The cold
and thermal portions of the internal energy can be
written in terms of their electronic (el) and ionic (i)
components:

Ec(V ) = Eel
c (V )+E i

c(V ) (3)

ET (V,T ) = Eel
T (V,T )+E i

T (V,T ). (4)

For this work, our MD simulations are all in the
electronic ground-state, i. e.,Eel

c (V ), which allows
us to neglect electronic contributions to the ther-
mal energy (Eel

T (V,T ) = 0). Regardless, we include
Eel

T (V,T ) in our formalism, although our final ex-
pression for the difference between the quantum and
classical thermal energy will depend exclusively on
the ionic components toET andEc.

In first principles Molecular Dynamics, the ions
are treated classically, and we denote the equation of
state for the classical system with lower case letters:

e(V, t) = ec(V )+ eT (V, t) (5)

p(V, t) = pc(V )+Γ(V )eT (V, t)/V, (6)

wheree, p, and t represent the classical internal
energy, pressure and temperature, respectively, we
have substituted in the definition of the thermal com-
ponent of the pressure in Eqn. 6, andΓ(V ) is the
same Grüneisen coefficient, mentioned above. Here,
the volumes of the quantum and classical systems are
constrained to be the same. For the classical system
the cold energy is entirely electronic, viz.,

ec(V ) = Eel
c (V ). (7)

Inclusion of electronic thermal effects yields the
following for the classical thermal energy:

eT (V, t) = Eel
T (V,T )+ ei

T (V, t). (8)

We now assume that the vibrational density of
states and electronic energies (Eel

c and Eel
T ) are the

same in both systems. Consequently, the Grüneisen
coefficients are also the same for both classical and
quantum systems. We constrain both systems to have
the same initial pressureP0 and temperatureT0. We
ignore the contribution of zero-point vibrations to
the cold component of the pressurePi

c(V ), which
we estimate to be smaller than the error bars in our
computed stress. As a result, we havepc(V ) = Pc(V ).

For a shock compressed process, both quantum
and classical systems will satisfy the Hugoniot re-
lation:

E(V,T )−E(V0,T0) =
1
2
(V0−V )(P+P0) (9)

e(V, t)− e(V0,T0) =
1
2
(V0−V )(p+P0). (10)

Using equations 1 and 2, we can then expand
equation 9 as the following:

Ec(V )−Ec(V0)+ET (V,T )−ET (V0,T0) =

1
2
(V0−V )

[

Pc(V )+
Γ(V )ET (V,T )

V
+P0

]

. (11)

Expanding the cold energyEc(V ) and the thermal
energyET (V,T ) into their electronic and ionic parts,
and solving forE i

T (V,T ), we obtain:

E i
T (V,T ) =

ET (V0,T0)−∆Eel
c −∆E i

c+
1
2 (Pc(V )+P0)(V0−V )

[

1−
Γ(V )(V0−V )

2V

]

−Eel
T (V,T ), (12)

where ∆Eel
c = Eel

c (V ) − Eel
c (V0) and ∆E i

c =
E i

c(V )−E i
c(V0).

Similarly, for the classical system, we obtain:

ei
T (V, t) =

eT (V0,T0)−∆Eel
c + 1

2 (Pc(V )+P0)(V0−V )
[

1−
Γ(V )(V0−V )

2V

]

−Eel
T (V,T ). (13)

We then subtract Eqns. 12 and 13 to obtain the
following relation forE i

T (V,T ):

E i
T (V,T )= ei

T (V, t)+

[

E i
T (V0,T0)− ei

T (V0,T0)
]

−∆E i
c

(

1− Γ(V )(V0−V )
2V

)

(14)
which we simplify to

E i
T (V,T ) = ei

T (V, t)+∆ET_c(T0,V0;V ), (15)

where ∆ET_c(T0,V0;V ) equals the second term on
the right hand side of Eqn. 14.

In order to compute the values of the cold and
thermal quantum ionic energies,E i

c(V ) andE i
T (V,T ),

we apply the quasi-harmonic approximation to the



vibrational states of the system. As a result, we write
the cold ionic energies as:

E i
c(V ) =

1
2

∫ ∞

0
ρ(ω,V )h̄ω dω, (16)

where ρ(ω,V ) is the vibrational density
of states of the system, which we take to
be the power spectrum of the time depen-
dent velocity autocorrelation function, viz.,
ρ(ω,V ) ∝

∫ ∞
0 dτ cos(ω,τ)〈v(τ)v(0)〉/

〈

v(0)2
〉

.
We normalizeρ(ω,V ) to

∫ ∞
0 dω ρ(ω,V ) = 3NA,

where NA equals Avogadro’s Number. With this
definition ET below has units of energy/mol, andV
is a molar volume.

Similarly, we write forE i
T (V,T ) :

E i
T (V,T ) =

∫ ∞

0
dω ET

QHO
(ω,T ),ρ(ω,V ) (17)

whereET
QHO

(ω,T ) is the average thermal energy
of the quantum harmonic oscillator:

ET
QHO

(ω,T ) =
h̄ω

eh̄ω/kBT −1
. (18)

We now relateE i
T (V,T ) and ei

T (V, t) by taking
Eqns. 17 and 15 to form:

E i
T (V,T ) =

∫ ∞
0 dω EQHO(ω,T )ρ(ω,V )

= 3NkBt +∆ET_c(T0,V0;V ). (19)

Thus, determination of the Hugoniot quantum
temperature proceeded as follows. After calculation
of the power spectrum, we use Eqns. 16 and 17 to
determine the value of∆ET_c(T0,V0;V ). Values of
Γ(V ) were computed by first performing two con-
stant volume-temperature (NVT) simulations at the
Hugoniot temperature and at 200 K above for both
the lowest and highest simulation densities for each
system.Γ(V ) was then determined by using the rela-
tion Γ(V ) =V ( ∂P

∂E )V ≈V (P2−P1)/(E2−E1). Values
of Γ(V ) at densities between the two extrema were
computed via linear regression. We then use Eqn. 19
to solve iteratively for the quantum Hugoniot tem-
peratureT , which we labelTQM. Since the power
spectrum can be calculated for any saved simulation
trajectory, our technique can easily be applied to any
previously computed shock compression MD simu-
lation.

COMPUTATIONAL DETAILS

All shock compression simulations were conducted
with the Multi-Scale Shock Technique (MSST)[8].
MSST can dramatically reduce the number of parti-
cles relative to non-equilibrium molecular dynamics
(NEMD) methods, while guaranteeing that the sim-
ulation converges to the correct thermodynamic end
state. The MSST [8] maintains the system onboth
the Rayleigh linep − p0 = U2(v0 − v)/v0, (where
U is the shock velocity) and the shock Hugoniot
under condition of uniaxial strain of the computa-
tional cell. By regulating the strain rate of the com-
putational cell, we guarantee that the(P,T ) ther-
modynamic states accessed during the shock sim-
ulation correspond to a steady macroscopic shock
wave. This allows for much smaller system sizes to
be used to achieve the same results as standard Non-
Equilibrium Molecular Dynamics simulations[9].
MSST has been used in conjunction with DFT-MD to
accurately reproduce the shock Hugoniot of a num-
ber of systems[4].

Our simulations of shock compressed water have
been discussed in a previous publication[4]. We used
the CPMD simulation software package[10] with
Born-Oppenheimer Molecular Dynamics. Stronger
shock velocities resulted in electronic excitation be-
yond the Born-Oppenheimer state, which requires
the inclusion of electron thermal excitations[11]. We
performed six simulations with shock velocities from
5 to 11 km/s, each with a time step of 0.1935 fs and
for up to 11 ps. All simulations were started from
the same configuration taken from an equilibrated
CPMD simulation of 64 H2O at ambient conditions.

RESULTS AND DISCUSSION

Our results for the Hugoniot temperature values for
water are shown in in Fig. 1. Using the method
for approximation forΓ(V ) mentioned above, we
computed values ofΓ = 0.681 at 8.3 GPa (5 km/s)
and Γ = 0.355 at 67.8 GPa (11/kms). These re-
sults are similar to experimental values forΓ for
water at lower pressures and temperatures[12]. We
have shown excellent agreement of our simulations
with experimental results for the pressure vs. den-
sity equation of state of water[4]. We find that our
quantum mechanical corrections bring our calcu-
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FIGURE 1. Plot of classical and quantum Hugoniot
temperatures for water. Open circles correspond to clas-
sical ionic temperatures, and solid circles to quantum cor-
rected temperatures. Experimental results are labeled with
open triangles [13] and open squares[2].

lated temperatures in excellent agreement with ex-
periment. Our results show that quantum nuclear vi-
brational effects play a significant role in water even
at elevated temperatures (> 4000 K).

CONCLUSIONS

Our quantum Hugoniot temperature calculation
method yields an improved agreement between
DFT-MD simulations and pyrometry experiments.
We predict significant quantum corrections to the
Hugoniot temperatures of our simulations, due to
quantization of the high frequency vibron of cova-
lently bonded systems such as water. Our technique
is independent of the model used for MD simulation,
and can easily be applied to any number of sys-
tems including complicated mixtures. Our quantum
Hugoniot temperature method can also be used to
compute Hugoniot temperatures where equation of
state modeling is known to be inaccurate.

Prior to our submission, we were made aware
of recent results from a somewhat similar tech-
nique used to calculate the influence of quantum nu-
clear vibrational effects on the equation of state of
water[14]. This technique differs from ours in that it
is based on vibrational temperatures and requires cal-
culation of the mole fraction of non-dissociated wa-

ter molecules. However, their results show similarly
improved agreement to experiment for the Hugoniot
temperatures.
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